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Società Italiana di Fisica
Springer-Verlag 1999

Semiclassical approach to the three-body muon-transfer collisions
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Abstract. Muon-transfer rates in collisions of hydrogen-like atoms (pµ−) or (dµ−) with light nuclei t, 3He,
4He, 6Li or 7Li, are calculated in a semiclassical approximation to the Faddeev-Hahn equations. The two
nuclei involved are treated classically, while the motion of the muon in their Coulomb field is considered
from the quantum mechanical point of view. The experimentally observed strong dependence on the charge
of the nuclei is reproduced.

PACS. 36.10.Dr Positronium, muonium, muonic atoms and molecules

1 Introduction

The motion of negative muons in hydrogen media with
admixtures of elements A of charge Z > 2 shows a pecu-
liar behavior [1,2]. Opposite to the smooth Z-dependence
predicted by the Landau-Zener formula, the experimen-
tal muon transfer rates in processes like (pµ−) + A →
p+ (Aµ−) depend in a complicated manner on the charge
Z. The measured isotropy effects, e.g. the ratio of the
transitions (pµ−) + Ne→ p+ (Neµ−) and (dµ−) + Ne→
d+(Neµ−), differ also considerably from the Landau-Zener
predictions. Another phenomenon which has not yet found
a satisfactory theoretical explanation is the time distri-
bution of the γ-production occurring in such transition
processes [3]. In what follows we develop a method for
solving these problems, which is based on detailed few-
body equations rather than the effective potential treat-
ment employed in alternative investigations.

Coulombic three-body systems with two heavy and
one light particle are considered traditionally within
the framework of the Born-Oppenheimer approximation.
For muon transfer processes, Faddeev-type equations [4],
especially the modified version proposed by Hahn [5], ap-
pear to be better suited. They are formulated for appro-
priately chosen wave-function components which show the
correct physical asymptotics. Our method for describing
rearrangement processes

2 + (1, 3)→ (2, 3) + 1 (1)

with one light particle 3 of charge Z3 = −1 and two heavy
particles 1 and 2 of charges Z1 = 1 and Z2 = 1, 2, 3, ..., is
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based on a semiclassical approximation to such Faddeev-
Hahn (FH) equations [6]. These equations are treated by
means of an adequate coupled channel expansion.

In the following section we develop the formalism. The
results obtained for the collision of hydrogen-like systems
(hµ−) = (pµ−) or (dµ−) with light ions t+, 3He++,
4He++, 6Li+++ or 7Li+++ are given in Section 3. Fairly
good agreement with quantum mechanical calculations is
found for processes involving t+ and He++. This justifies
to apply our semiclassical approach also to processes of
higher charge, like Li+++, for which no fully satisfactory
quantum mechanical calculations exist. As an additional
test of the method, calculations for the charge exchange
scattering of protons off electronic hydrogen atoms are
also performed.

In the muonic case the units are e = ~ = mµ = 1, in
the electronic case we use e = ~ = me = 1.

2 Formalism

Written as integro-differential equations, the Faddeev
equations [4] read(

i
∂

∂t
−H0 − Vjk

)
|Ψl〉 = Vjk (|Ψj〉+ |Ψk〉) . (2)

Here H0 is the kinetic energy operator of the three parti-
cles,

H0 = −
1

2µjk
∆rjk +

1

2Ml
∆Rl

, (3)

rjk and Rl are the Jacobi coordinates, µjk and Ml the
corresponding reduced masses, Vjk the two-body poten-
tials.



34 The European Physical Journal D

As mentioned above we consider particle 3 to be the
light one, i.e.,

m3

m1
� 1,

m3

m2
� 1. (4)

Then, the heavy particles 1 and 2 can be considered as
moving along classical trajectories R1(t) and R2(t). For
the treatment of this situation we employ, instead of the
three Faddeev equations, the two coupled FH equations
[6,7](
i
∂

∂t
−

p2
r

2µ1
− V13(x) −

Z2Z3

R(t)

)
Ψ1(r,R(t), t) =(

V13(x)−
Z1Z3

R(t)

)
Ψ2(r,R(t), t)

(
i
∂

∂t
−

p2
r

2µ2
− V23(y) −

Z1Z3

R(t)

)
Ψ2(r,R(t), t) =(

V23(y)−
Z2Z3

R(t)

)
Ψ1(r,R(t), t). (5)

Here, R(t) is the relative vector between particles 1 and 2,
its time dependence being determined according to classi-
cal mechanics. The motion of the light particle 3 is treated
quantum mechanically, pr = ∇r/i is the momentum op-
erator corresponding to the relative variable r between
particle 3 and the center of mass of particles 1 and 2.
The relative vectors in the (13) and (23) subsystems are
denoted by x and y, respectively, and the corresponding
reduced masses are given by

µ1 = m1m3/(m1 +m3),

µ2 = m2m3/(m2 +m3). (6)

To solve equations (5), we expand the wave function com-
ponents Ψk(r,R(t), t) into the solutions Φk3

n (r,R(t), t) of
the respective subsystem Schrödinger equations(

i
∂

∂t
−

p2
r

2µk
− Vk3(r−Rk(t))

)
Φk3
n (r,Rk(t), t) = 0 .

(7)

That is, we write

Ψk(r,R(t), t) =

(∑
+

∫ )
n

Ckn(R(t), t)Φk3
n (r,R(t), t),

(8)

the summation (integration) running over the whole dis-
crete and continuous spectrum.

For a constant velocity Ṙk(t) = vk one finds

Φk3
n (r,R(t), t) = eiµkvk·r−i(E

k3
n +

µk
2 v2

k)tϕk3
n (r−Rk(t)),

(9)

the functions ϕk3
n being given by(

−
1

2µk
∆x + Vk3(x)

)
ϕk3
n (x) = Ek3

n ϕk3
n (x) . (10)

Inserting the expansion (8) into (5), we obtain for the
coefficients Ckn a set of coupled equations [6,7]

i
∂C1

n(R(t), t)

∂t
=(∑

+

∫ )
m

W12
nm(R(t), t)γ12

nm(t)C2
m(R(t), t)

i
∂C2

m(R(t), t)

∂t
=(∑

+

∫ )
n

W21
mn(R(t), t)γ12∗

nm(t)C1
n(R(t), t) , (11)

where

γ(jk)
nm (t) = ei(E

j3
n −E

k3
m +∆ε)t,

Ej3n = −µjZ
2
j /2n

2,

j 6= k = 1, 2. (12)

The matrix elements Wjk
nm(R(t), t) are obtained by sand-

wiching the potentials in equation (5) between the channel
functions (9),

Wjk
nm(R(t), t) =〈

eiµjvj ·r−i
µj
2 v

2
j tϕj3n (r −Rj(t))

∣∣∣Vj3(r−Rj(t))

−
ZjZ3

R(t)

∣∣∣eiµkvk·r−iµk2 v2
ktϕk3

m (r−Rk(t))
〉
. (13)

Equations (5) are to be solved under the initial condition

Ψ1(r,R(t), t) ∼
t→−∞

Φ13
1s(r,R(t), t),

Ψ2(r,R(t), t) ∼
t→−∞

0 , (14)

which implies for the coefficients Cjn(R(t), t)

C1
n(R(t), t) ∼

t→−∞
δn1,

C2
n(R(t), t) ∼

t→−∞
0 . (15)

For low-energies, say below 20 eV, the relative nuclear ve-
locities are practically zero in the respective muon-atomic
unities. The exponential factor in equation (9), hence, can
be replaced by unity and the matrix elements (13) sim-
plify to

Wjk
nm(R(t)) =

∫
d3rϕj3

∗

n (r−Rj(t))

×

(
Vj3(r−Rj(t))−

ZjZ3

R(t)

)
ϕk3
m (r−Rk(t)) . (16)

In order to obtain the capture probabilities |C2
n(t ∼ ∞)|2

we, thus, have to solve the system of coupled ordinary
differential equations (11), its ingredients and initial con-
ditions being given by equations (12, 15, 16).
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Fig. 1. The relative positions of the heavy particles h and A before and after collision: the straight line a is an approximate
trajectory, b is the real one.

The trajectories of the heavy particles will be chosen as
straight lines, R(t) = ρ+ vt for t ≤ 0 and R(t) = ρ+ v ′t
for t > 0, with ρ being the impact parameter, v and v ′

the velocities before and after the collision, respectively.
Taking them as asymptotes to the actual motion, the angle
between their directions, i.e. between v and v ′, is the
deflection angle ϑ. Moreover,

v =
√

2E/M1, (17)

v ′ =
√

2(E +∆E)/M2, (18)

where E is the CM collision energy,

∆E = E13
n −E

23
m (19)

and

M1 =
(m3 +m1)m2

m1 +m2 +m3
,

M2 =
(m3 +m2)m1

m1 +m2 +m3
· (20)

To choose the trajectory before the collision as a straight
line is justified because of the neutrality and the small

size of the incident hydrogen-like atom (hµ−). To choose
a straight trajectory also after the charge exchange process
is, of course, an approximation to the real hyperbolic curve
(see Fig. 1) [7].

From the definition of R(t) we infer

R(t) =
√
ρ2 + v2t2, for t ≤ 0 (21)

and

R(t) =
√
ρ2 + v ′ 2t2 − 2ρv ′t sinϑ, for t > 0. (22)

The angle ϑ is determined according to classical mechanics
(see Fig. 1),

ϑ = π/2−

∫ ∞
rmin

ρ ′/r2dr√
1− ρ ′ 2/r2 − U(r)/Tkin

, (23)

with the final-state impact parameter ρ ′ being given, due
to angular momentum conservation, by

ρ ′ =
M1v

M2v ′
ρ. (24)
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U(r) is the screened Coulomb potential between h = p+

or d+ and (Aµ−),

U(r) = (Z2 − 1)/r + (1/r + Z2µ2)e−2Z2µ2r. (25)

The lower bound rmin of the integral is obtained as a
root of

1−
ρ ′ 2

r2
min

−
U(rmin)

Tkin
= 0, (26)

where

Tkin =
M2v

′2

2
(27)

represents the kinetic energy of the outgoing fragments
in the center-of-mass system. Note that the angle in (23)
is half the one given in [8] since the Coulomb-like poten-
tial (25) acts only during the time after the collision.

When solving the resulting coupled set of equations
for the expansion coefficients, it is seen that its solutions
Ckn(R(t), t) tend towards an asymptotic value C2

n(ρ) which
depends, of course, on the impact parameter ρ. The cross-
section of process (1) is given by

σntr = 2π

∫ +∞

0

|C2
n(ρ)|2ρdρ. (28)

3 Results

In this section we present cross-sections σtr and muon
transfer rates λtr calculated within the above formalism
for processes of the type

(hµ−)1s +A→ (Aµ−)1s + h, (29)

where h = p+ or d+ and A = t+, 3He++, 4He++, 6Li+++

or 7Li+++. We restrict ourselves to a two-level approxi-
mation by choosing in the relevant close-coupling expan-
sion only the hydrogen-like ground states (hµ−)1s and
(Aµ−)1s. The transfer rate is defined by

λtr = σtrvN0, (30)

with v being the relative velocity of the incident fragments
and N0 the liquid-hydrogen density chosen here as 4.25×
1022 cm−3.

In Table 1 we compare our cross-sections σtr/10−20

cm2 for the case h = d+ and A = t+ at various colli-
sion energies E with those of reference [9]. For the muon
transfer rate of this process at E = 0.04 eV we find
λtr = 3.70×108 s−1. Measurements of this value range
from λexptr = 2.8×108 s−1 [10] to λexptr = 3.5×108 s−1 [11].

The rates λtr /106 s−1 for h = p+ or d+ and A =
3He++, 4He++, 6Li+++ or 7Li+++ at E = 0.04 eV are
presented in Table 2 together with the 3He++ and 4He++

results of [12].
Figure 2 shows our dµ+ t→ tµ+d cross-sections com-

pared with variational calculations [13] which are gener-
ally considered to be most accurate. It is seen that the

Table 1. Cross-sections σtr/10−20 cm2 for t+(dµ)→ (tµ)+d.

E(eV) our results [9]

5.0 3.40 2.87

3.0 3.17 2.12

2.0 3.12 1.76

1.0 3.05 1.43

0.1 3.16 2.00

0.04 3.50 2.94

Table 2. Muon transfer rates λtr/106 s−1 at low energy
E = 0.04 eV.

3He++ [12]

p+ 7.25 6.3

d+ 4.77 1.3
4He++ [12]

p+ 6.65 5.5

d+ 4.17 1.0
6Li+++ 7Li+++

p+ 1.72 1.67

d+ 1.01 0.96
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Fig. 2. Cross-section of the reaction dµ+ t→ tµ+ d.

shapes of the curves agree fairly well over a wide energy
range.

All these comparisons demonstrate the efficiency of our
semiclassical treatment for atoms of charge Z = 1 or 2. Its
application to processes involving higher charges, there-
fore, is expected to be also justified. Our 6Li or 7Li calcu-
lations represent first examples for such an extension.

As a further test of our method, we have also calculated
the low-energy charge exchange scattering of protons by
hydrogen atoms

p1 + (p2, e)→ (p1, e) + p2. (31)

In Table 3 our results are compared with calculations
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Table 3. Cross-sections σex/10−15 cm2 for charge exchange
scattering of protons by hydrogen atoms.

E(eV) our results [14]

10.0 3.73

5.0 4.10 3.72

1.0 4.95 4.54

0.22 5.60 5.18

based on the Born-Oppenheimer approximation [14]. The
agreement is again quite satisfactory.

Calculations involving nuclei of higher charge, and a
full quantum mechanical treatment are in progress.
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